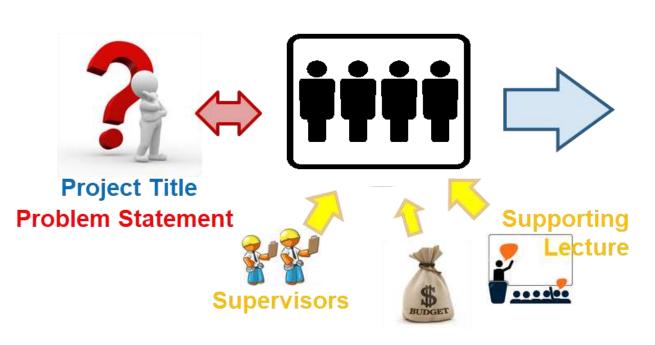
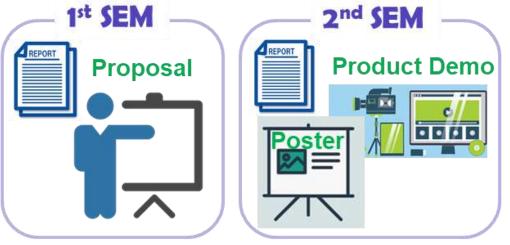
INTEGRATED DESIGN PROJECT (IDP)

REGISTRATION PREPARATION GUIDELINES

- 1. Every student need to read carefully the details of IDP in following slides.
- 2. Group representative needs to register group members by filling up google document and make sure all requirements are fulfilled by 26th June 2020.

 (https://docs.google.com/document/d/1AMqdwlJ17gJHTie_7 XlL7iedVp-mpqZb5NaNhpO6cy8/edit?usp=sharing)
- 3. Each group needs to search for a supervisor, obtain supervisor agreement and to discuss project detail.
- 4. Group representative needs to register title registration by filling up google form within week 3 session 20202021. (https://forms.gle/dF7DMxzlxCwDq2Y47)


REGISTRATION PREPARATION GUIDELINES


- 5. There will be 3 themes as follows:
 - 1. Leveraging technology for pandemic mitigation
 - 2. Smart system in developing human-centred society
 - 3. Innovating technology for securing future energy
- 6. Each group can choose one supervisor in that 3 themes (1 lecturer is allowed to supervise one group)
- 7. Student can check the list of supervisor in Departmental website from 15th June 2020.
- *Do not forget to register KIX2001 in registration system in semester 1 and KIX3001 in semester 2 for those who meet the requirements.

INTEGRATED DESIGN PROJECT

• The integrated design project course are senior-level project design courses that require students to use all their engineering knowledge to solve a real-world engineering problem or develop a viable product with consideration of sustainability and social factors.

Previous project link

 $\frac{https://www.youtube.com/channel/UCCbATnTBgBRWa-qtwJyMvlQ/videos?reload=9}{}$

COURSE LEARNING OUTCOMES

KIX2001

At the end of the course, students are able to:

- 1. Conceptualize design solution of an engineering design to a defined end state.
- 2. Function effectively as an individual, and as a team member or a leader.
- 3. Communicate effectively on complex engineering activities through reports and presentations.

COURSE LEARNING OUTCOMES

KIX3001

At the end of the course, students are able to:

- 1. Perform technical investigation and analysis of the proposed design.
- 2. Implement project management and/or economic feasibility study of the proposed design solution.
- 3. Apply ethical principles, standards and professional engineering code of ethics.
- 4. Function effectively as an individual, and as a team member or a leader.
- 5. Communicate effectively on complex engineering activities through reports and presentations.
- 6. Evaluate the sustainability impact on the design solution.

REQUIREMENT & DETAIL

l group: 4 members, l supervisor, (co-supervisors)

KIX2001

- 2 credits
- Completed 50 credit hours

KIX3001

- 4 credits
- KIX2001

SCHEDULE

KIX2001, Semester 1: 14 weeks	KIX3001, Semester 2: 14 weeks
 7 weeks of lectures (2 hours/week) Lecture Topics: Hackathon* Introduction to Integrated Design Project (guidance) and, product design and development Development processes and organizations, and product planning Identifying customer needs Product specifications and concept generation Concept selection and testing Product architecture Sustainable design 	 Week 1-13 Week 14 Final Project report Final poster presentation & Product Demonstration
 Week 8-14 Weekly meetings Project proposal Presentation (last week) 	

Assessment Criteria	<u>Elements</u>
Design process (50%) Assessed in Proposal report Presentation	 Design structure approach Complexity of the design problem Quality of the design solution Project objectives Innovative & creativity
Teamwork (25%) • Weekly meetings	 Delegation and fulfillment of responsibilities Focus and punctuality Team communication Peer review
Communication (25%)Proposal reportPresentation	 Writing Mechanics Oral Performance Graphical Representations Organisation and Clarity Content

Assessment	Criteria
------------	----------

Elements

Technical investigation and analysis (40%) Assessed in Final report Poster & Demo	 Technical investigation and analysis Use modern tools Detailing competency Project objectives Innovative & creativity
Project management and/or economic feasibility study (12%) • Final report	 Risk management Schedule Resources Budget
 Ethical principles, standards (12%) Final report Poster & Demo 	 Identify relevant standard testing procedures Safety and health considerations Societal considerations Similarity index Citation

Assessment Criteria

Elements

Teamwork (12%)

Weekly meetings

- 1. Delegation and fulfillment of responsibilities
- 2. Focus and punctuality
- 3. Team communication
- 4. Peer review

Communication (12%)

- Final report
- Poster & Demo

1. Writing Mechanics

- 2. Oral Performance
- 3. Graphical Representations
- 4. Organisation and Clarity
- 5. Content

Sustainability impact (12%)

- Final report
- Poster & Demo

- 1. Environmental (optimized usage of resources, used of recovered and renewable resources, protected ecosystem, minimise or eliminate emission of hazardous substances).
- 2. Social (Addressed community and stakeholder requests, considered local circumstances and cultures, protected human health and well-being requests).
- 3. Justification for sustainability (Incorporated life cycle approach to design, incorporated life cycle engineering design tools, used innovative technologies to achieve sustainability).